
A Design Pattern for 
High-Performance Scrolling of Table 
Views on iOS Using Layout Models 
 
Jason Howlin and Shamal Nikam 
July 27, 2018 
 
Abstract 
 
On iOS devices, smooth scrolling lists of 
content, such as a stream of news articles, 
is essential to a delightful user experience.  
 
This paper outlines a design pattern for 
highly optimized and efficient rendering of 
content in UITableViews and 
UICollectionViews. We look at how to model 
layouts as data independent of actual view 
objects, distribute layout-related tasks 
across multiple threads, and how to 
pre-calculate and cache layouts to minimize 
the work needed at render time.  
 
To support our approach, we’ll look at 
sample code and compare measurements 
against less-efficient approaches, such as 
Auto Layout. Our inspiration comes from 
working on apps like Newsroom, Aol App, 
and Alto that have long lists of variable 
height items to display and striving to 
improve scrolling performance. 
 
Introduction: The Problem 
 
Typical approaches for building lists of 
content include using Auto Layout or using 
dummy measuring views to get the heights 
needed by table view. This requires a lot of 
layout calculations on main thread, 
consuming rendering bandwidth and 
impacting scrolling performance. 
 
Importance 
 

UITableViews and UICollectionViews are 
the most popular approaches to show long 
lists of content like news articles, mails, etc, 
and are an inherent part of all apps. Users 
expect a smooth scrolling experience to 
quickly skim through lots of details. So the 
expectation from app developers is to 
maintain a 60 FPS (Frames Per Second) 
rendering speed. 
 
Challenges When Displaying Lists 
 
UITableView and UICollectionView both 
inherit from UIScrollView, a class which 
displays content larger than the size of the 
view itself. In a list of 1000 items, perhaps 5 
can fit on a screen at any given time, yet the 
scroll view needs to know  the total content 
size for all 1000 items.  
 
The scroll view needs the height information 
to display a set of scroll bars, that indicate 
the amount of content the scroll view has to 
display, and the precise location of the user 
while they are scrolling through the list. 
 
Therefore, one of the earliest tasks to 
perform before rendering a table view is to 
calculate the height of each item. And when 
the height of each item is variable and a 
function of the content it is displaying, such 
as the number of lines needed to display a 
news headline, you need to visit each item 
in the list and calculate the required height 
for that item - and the sum of all items 
equals the total content size. 
 
Common Approach 
 
Auto Layout is a mechanism provided by 
Apple that calculates size and position of 
views based on a set of supplied constraints 
and the contents of a UI element. It is a neat 
approach and works well with smaller lists 
where we don’t have content with dynamic 

1 



height. We can still tweak it to use with the 
dynamic heights, but that involves creating 
a “dummy” instance of your view offscreen, 
configuring it for your data, and then getting 
the height of the view. Here we are 
‘rendering’ content using the main thread 
that is not visible to the user, just to 
calculate the height.  
 
We can definitely improve the experience by 
caching the heights but we still do all this on 
main thread, where all the UI rendering 
happens. 
 
UITableView offers an API that works with 
Auto Layout to calculate variable height 
items, but our experience has shown it to be 
slow, as well as visually buggy when adding 
and removing items in the list.  
 
Our Approach of Using Layout Models 
 
In our approach we propose offloading this 
work to a background thread, and caching 
the layout and view models. 
 
A ​Layout Model​ is simply a representation 
of your view independent of the actual UI 
elements, like labels, images, and buttons. 
This representation consists of all the 
rectangles representing the position and 
size of each subview. 
 
View Models 
 
Views display information to the users. The 
information comes from data model objects 
inside your application, typically consisting 
of raw, unformatted types. 
 
The most common approach is to pass the 
model object to the view, which takes the 
model values it’s interested in and applies 
formatting, such as fonts, colors, a localized 
formatted date, and others. Some values 

may not be present on an individual model, 
which means we have to hide or reposition 
views. 
 
An established but less commonly-used 
approach is to build an object that 
represents a formatted view of your data for 
a particular view, called a ​View Model​. The 
views become more easily configurable and 
reusable with a view model. To reuse, one 
can simply map their model to a view 
model, an operation that keeps the view 
object agnostic to a particular model object 
type. 
 
There is a cost involved with applying 
formatting - the NSAttributedString class 
performs internal synchronization when 
applying fonts and colors that has overhead. 
Storing these values in a view model allows 
us to cache this information and perform the 
operation only once. 
 
Here is an example of a View Model: 
 
View Model 

NSAttributed Strings for UILabels / 
UITextViews. 
Formatted date strings. 
Image URLs. 
View background / foreground colors. 
View shadow / border information. 
Icon image names (heart, reply) 

 
Layout Models 
 
The layout model contains all of the 
geometry related information - primarily 
structs defining the size and position of 
each user interface element, such as labels, 
images, and buttons, sized to fit the values 
in the view model. 
 
Not only does the object store these values, 
but also contains a function to calculate 

2 



them. To do so, it needs information such 
as a constrained dimension, usually an 
available width to work in. Also a number of 
constants around the metrics of the view - 
the spacing between objects, the margins, 
and the fixed size of some items, such as 
images. 
 
What remains are the variable height items, 
such as labels, that are a function of the 
formatted text they display.The most 
important part of this process is calculating 
the size of the formatted text to be displayed 
in UILabel or UITextView. 
 
The system frameworks provide a number 
of ways to calculate the height required to 
draw text without actually drawing the text. 
These include methods on 
NSAttributedString and within TextKit 
framework. 
 
What’s nice about these methods are they 
do not need to be performed on the main 
thread. It allows us to offload this work to a 
background thread and keep the main 
thread free, which is where all of our stutters 
occur. 
 
And finally, the layout model will also 
provide the overall height of the view. That 
way it is easily accessible to the tableview 
delegates that need to know the height of 
every item in the list. 
 
Once all the calculations are done, the 
frames can be set in the ‘layoutSubviews’ 
method as needed, such as when a cell 
appears on screen. It is also worth noting 
that at this point we can determine if the 
frame has changed and set it only if the 
existing view frame is different than the one 
provided by the layout model. 
 
 

In the image below, green rectangles show the 
frames calculated by the Layout Model. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Layout Model 

Frames for all UI elements. 
Margins / Padding. 
Constant Heights. 
Size of the entire View.  

Function that accepts width and calculates 
frames for all subviews. 

 
Offloading Layout Calculation to 
Background Thread 
 
It is quite common that displaying a list of 
content requires some asynchronous work - 
whether it’s making a network request to 
fetch items or querying from a database. 
 
The UI for a list of content is typically built to 
display a ‘Loading’ state of some kind, such 
as a spinner. To give the user an 
experience of infinite scrolling, apps usually 
show a spinner to indicate they are getting 
more data as well. 
 
The common approach is to perform this 
fetching off of the main thread, and once the 
data is ready for the UI, bounce back and 

3 



set the new data. But with the new data, the 
scroll view’s height will change. And so the 
heights need to be recalculated all over 
again, which will happen on the main 
thread. 
 
If you recall, we’ve previously established 
that heights can all be calculated off the 
main thread, so we can add this calculation 
(the creation of our view models and layout 
models) as ​another step in our 
asynchronous data retrieval process​. Not 
only can it be performed asynchronously, 
the individual calculations can be performed 
in parallel, as each item’s calculation has no 
dependency on another. Caching the results 
and then bouncing back to the main thread 
allows the updated height calculation 
process to be a very fast cache lookup. 
 
Downloading and Rendering Images in 
Table Views 
 
Any discussion of scrolling performance 
would be incomplete without addressing the 
downloading and rendering of images. To 
stand a chance of achieving 60 FPS 
scrolling, best practices must be followed to 
asynchronously download images over the 
network ​and​ decode and resize them in the 
background. 
 
We’ve included our custom implementation 
of a high-performance image downloading 
system in our sample code. 
 
It also supports working with UITableView’s 
prefetch API to fetch images about to 
appear at a lower priority, as well as 
cancelling fetches. 
 
It’s important that this be implemented 
efficiently, as an incorrect implementation 

uses main thread CPU time, which would 
have an impact on any layout-related work. 
https://developer.apple.com/videos/play/ww
dc2018/219/ 
 
Related Work 
 
UICollectionViewLayout 
 
Some of Apple’s own frameworks have 
taken a similar approach of separating the 
layout code from the actual view rendering. 
 
The ‘UICollectionViewLayout’ expects an 
implementation to provide objects that 
represent the position and size of all cells in 
the collection view before any rendering. 
These objects, the 
‘UICollectionViewLayoutAttributes’ class, 
have a one-to-one relationship with each 
cell. It has just a few simple properties, most 
importantly a frame. 
 
The typical approach when creating your 
own layout is to calculate this information, 
and then cache them in the layout class for 
use when it comes time to render the cell on 
screen. 
 
TextKit Framework 
 
For any given collection of text, which 
contains the string to render as well as the 
font, size, paragraph spacing, and a width 
constraint, TextKit can provide a series of 
frames that each glyph will be rendered in, 
without any actual view to render in. 
 
These calculations can safely be performed 
off the main thread.  
 
On the left is the information that TextKit’s 
NSLayoutManager provides as a collection of frames 
independent of a label (we’ve colored them in to 

4 

https://developer.apple.com/videos/play/wwdc2018/219/
https://developer.apple.com/videos/play/wwdc2018/219/


illustrate their position). On the right is a UILabel laid 
on top - you can see how the frames match perfectly. 

 
 
 
 
 
 
 
 
 

Texture Framework (formerly 
AsyncDisplayKit) 
 
Facebook and Pinterest have worked on the 
Texture framework, which focuses on 
rendering off the main thread for smooth 
scrolling. Their sample code works well, but 
it introduces heavy dependencies: it 
requires that all views inherit from a base 
class, it is a large and complex framework 
that could be difficult to debug, has a steep 
learning curve to understand how things 
work together, and puts your application at 
their mercy for fixing bugs or updating it to 
support new iOS versions.  
 
Our approach and these have similarities 
only in the sense that they take advantage 
of doing work asynchronously. There are 
only so many UI-related tasks that can be 
performed async - namely image 
downloading and decompression, and text 
measurement.  
 
The other component of Texture is the 
notion of performing work for cell rendering 
lazily, as cells are about to appear on 
screen. However, this was before Apple 
provided public API to be notified of 
upcoming cells to be rendered. So the 
ability to prefetch image downloads for cells 
appearing on screen can be performed 
without the Texture framework. 

Benchmarks and Comparisons 
 
Text only view measurements on  
iPhone 6 - iOS 12 

 
 
 

 Auto 
Layout 

Our 
Approach 

Time to dequeue and 
configure a UITableViewCell 

4.5 ms 0.9 ms 

FPS with very fast scrolling 57 60 

 Time to rotate (avg value) 480 ms 480 ms 
 
A more complex view measurements on 
iPhone 6 - iOS 12 

 
 
 
 
 
 
 
 
 
 
 

 Auto 
Layout 

Our 
Approach 

Time to dequeue and 
configure a UITableViewCell 

12.5 ms 2.8 ms 

FPS with very fast scrolling 57 60 

 Time to rotate (avg value) 600 ms 550 ms 
 
Considering on iOS that a frame needs to 
render every 8 to 16 ms, being able to 
return a cell in 3 ms vs. 12 ms is valuable. 
Dropping even a single frame will cause a 
stutter. We consistently achieved a solid 60 
fps under very fast scrolling, versus 57 fps 
using the Auto Layout approach. 
  

5 



Drawbacks 
 
Care must be taken to ensure the layout 
object stays in sync with both the view 
model, and the higher-level layout 
environment, such as the device orientation 
or the constraints of a parent view. 
 
Any time these values change, they may 
impact the layout object. If label frames 
have been calculated with a fixed width of 
the device in a portrait orientation, the 
cached values will no longer be valid when 
device is rotated.  
 
To resolve this, a higher level object, such 
as a view controller, needs to invalidate and 
recalculate layout objects on bounds 
change. Resetting the layout object on a 
view, if there are changes, should invalidate 
the existing layout and trigger a 
repositioning of views. 
 
Another potential issue is the methods used 
to measure text are unaware of a specific UI 
element. A ‘UILabel’ may provide some 
additional margins and insets which need to 
be factored in when measuring text. 
 
Conclusion 
 
IOS provides a very efficient rendering 
system. In most cases, abstracting the 
layout is overkill - it doesn’t solve 
performance issue that needs solving. In 
fact, it increases complexity. 
 
However, when dealing with large lists 
containing views of varying heights and 
sizes, this approach attempts to do the 
required work the least amount of times, 
and with a number of optimizations. 
Our sample code provides a complete implementation 
of our approach versus using Auto Layout. It also 
includes our image downloading implementation. 
 

Pattern Summary 
 
1. Asynchronously create a view model for 
each cell that contains the formatted data to 
display, such as ‘NSAttributedStrings’, 
formatted dates, colors. ​Cache this model 
as to calculate only once. 
 
2. Asynchronously create a view layout 
object that, given a view model and 
constrained width, measures text, uses 
margins and spacing, and provides position 
and sizes for each subview in your cell. 
Cache this model as to calculate only once. 
 
3. Perform the above steps in a background 
queue as an additional step in fetching your 
content from the network or database 
(which is already asynchronous). 
 
4. For each cell about to be rendered, apply 
the values from these two objects if 
changed - set attributed text on labels and 
set frames of views. 
 
5. Use the UITableView prefetching API to 
begin / cancel image downloading, and be 
sure your image work decompresses and 
resizes images properly.  
 
The above steps are a focused approach 
when high performance is necessary.  
 
Future Work 
 
Further additions would be, building a 
complex hierarchy of views to see at what 
point Auto Layout performs poorly and 
compare it against our layout approach. 
Introduce our design pattern in a real world 
complex application that performs a wide 
variety of operations like, handling push 
notification, authentication updates, showing 
live user presence while scrolling, and 
measure  how this approach performs.  

6 



Addendum 
 
References 
 

1. Sample Implementation of Layout 
Model Approach vs. Auto Layout: 
https://git.ouroath.com/jhowlin/Layou
tModelFeed.git  

2. WWDC 2018 Image Best Practices: 
https://developer.apple.com/videos/
wwdc2018/  

3. UICollectionViewLayout: 
https://developer.apple.com/docume
ntation/uikit/uicollectionviewlayout 

4. TextKit 
https://developer.apple.com/docume
ntation/appkit/textkit 

5. Texture  
https://github.com/TextureGroup/Tex
ture 

 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
  
 
 

7 

https://git.ouroath.com/jhowlin/LayoutModelFeed.git
https://git.ouroath.com/jhowlin/LayoutModelFeed.git
https://developer.apple.com/videos/wwdc2018/
https://developer.apple.com/videos/wwdc2018/
https://developer.apple.com/documentation/uikit/uicollectionviewlayout
https://developer.apple.com/documentation/uikit/uicollectionviewlayout
https://developer.apple.com/documentation/appkit/textkit
https://developer.apple.com/documentation/appkit/textkit
https://github.com/TextureGroup/Texture
https://github.com/TextureGroup/Texture

